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[1] Satellite ocean color data enable the global assessment
of the ocean biosphere through determinations of
chlorophyll concentrations. However, ocean color is not a
function of chlorophyll alone. We assess differences
between two ocean color models with nearly identical
validation statistics. The resulting chlorophyll retrievals
show systematic differences which are consistent with each
model’s ability to account for the absorption of light by
colored dissolved organic materials. These differences are
often large and approach 100% poleward of 40� latitude.
We conclude that the discrepancies are due to fundamental
differences in model assumptions and their empirical tuning
using geographically limited, in situ data. This source of
uncertainty is important as the choice of ocean color model
alters modeled rates of global net primary production by
more than 30%. The ultimate resolution of this issue
requires continued improvements in remote sensing
algorithms and validation data as well as satellite
technology. Citation: Siegel, D. A., S. Maritorena, N. B.

Nelson, M. J. Behrenfeld, and C. R. McClain (2005), Colored

dissolved organic matter and its influence on the satellite-based

characterization of the ocean biosphere, Geophys. Res. Lett., 32,

L20605, doi:10.1029/2005GL024310.

[2] The global assessment of phytoplankton biomass and
its variations in time and space is essential for the long-term
evaluation of ocean ecosystem health and for understanding
changes in the ocean carbon cycle [Field et al., 1998; Gregg
and Conkright, 2002; Fasham, 2003]. The sheer size of the
ocean and the costs associated with its in situ sampling have
led to the deployment of satellite ocean color missions
[IOCCG, 1999; McClain et al., 2004]. These global deter-
minations of the upper ocean chlorophyll distribution have
produced the first consistent views of the space/time
dynamics of the ocean biosphere [Yoder et al., 1993;
Longhurst, 1995; Behrenfeld et al., 2001]. However, satel-
lite ocean color data are produced through a complex
procedure which accounts for atmospheric, surface and in-
water effects to produce useful products like the chlorophyll
a concentration [Gordon and Morel, 1983; McClain et al.,
2004]. Some of the models used have roots in first princi-
ples while others are empirical and are constructed by
statistically modeling field observations. A critical part of
this procedure is the bio-optical model which relates a

measure of ocean color, the water-leaving radiance spec-
trum, to an in-water constituent, such as the chlorophyll
concentration [Gordon and Morel, 1983; O’Reilly et al.,
1998]. These models are developed and validated using
limited in situ data which do not span the full range
of oceanic conditions [Claustre and Maritorena, 2003].
Hence, this data limitation creates a potential for
significant biases in remote sensing products with important
implications.
[3] A five year time series of monthly satellite ocean

color observations from the Sea-viewing Wide-Field of
view Sensor (SeaWiFS) [McClain et al., 2004] is used to
determine surface chlorophyll concentrations (Chl) using
the operational empirical bio-optical algorithm (OC4v4)
[O’Reilly et al., 1998, 2000] and a semi-analytical algorithm
(GSM) [Maritorena et al., 2002; Maritorena and Siegel,
2005]. Both algorithms have been developed using the best
available data set of biological (chlorophyll concentrations)
and optical (water-leaving radiance spectra) properties. The
OC4v4 algorithm is a polynomial relationship of water-
leaving radiance ratios numerically fit to global chlorophyll
observations [O’Reilly et al., 1998]. It assumes that the
major optically-active components in the surface ocean
covary with Chl in a consistent manner globally. In contrast,
the GSM algorithm considers that Chl, colored dissolved
and detrital organic materials (CDM) and particulate abun-
dances each independently affect ocean color and these
properties are retrieved simultaneously from a water-leaving
radiance spectrum [Maritorena et al., 2002; Siegel et al.,
2002, 2005]. Values of the parameters used in the GSM
model are derived using a very similar data set to the one
used for developing the OC4v4 algorithm, but also includes
CDM and the optical backscattering due to particulates
[Maritorena et al., 2002; Maritorena and Siegel, 2005].
Both algorithms are good Chl predictors as demonstrated
using a match-up data set of SeaWiFS imagery and coinci-
dent in situ observations (Table 1). When water depths are
greater than 1000 m (chosen to reflect open ocean con-
ditions), the performance of the two bio-optical algorithms
is indistinguishable (Table 1).
[4] However, comparison of the two global Chl clima-

tologies shows large qualitative and quantitative differences
(Figure 1). Normalized percentage differences (DChl) ex-
ceed 50% over large expanses of the ocean where retrievals
found using the empirical algorithm (OC4v4) are greater
than the semi-analytical algorithm (GSM). Large differ-
ences are seen poleward of 40� latitude, particularly in the
northern hemisphere where they approach 100%. On
the other hand, GSM algorithm Chl values are greater than
the OC4v4 Chl retrievals by as much as 50% in the clear
waters of the subtropical gyres. These differences are of the
same size as errors in Chl retrievals reported from the
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previous generation of satellite ocean color observations
from the Southern Ocean [Mitchell and Holm-Hansen,
1991; Sullivan et al., 1993] but extend over larger regions
of the oceans than just the Southern Ocean (Figure 1).
[5] The spatial patterns of DChl and the colored detrital

material (CDM) distribution suggest a central role for CDM
in creating the observed differences (Figures 1c and 1d).
Regions with high average CDM retrievals correspond to

regions where the OC4v4 algorithm retrieves higher Chl
values than does the GSM algorithm. This can also be seen
in the strong correspondence observed between DChl and
CDM for the entire 5 year data set (Figure 2). The cause for
the large differences in global Chl climatologies appears to
lie in differences in the underlying assumptions used in the
two models. Here, the semi-analytical model (GSM) is able
to account for absorption of light by CDM independently
while the empirical model (OC4v4) assumes that CDM
covaries in a consistent way with Chl.
[6] For nearly all of the ocean, the CDM signal is driven

by changes in the colored dissolved organic material content
(CDOM) [Siegel et al., 2002]. High quality, open ocean
CDOM observations are even rarer than Chl observations
[Nelson and Siegel, 2002]. That said, the GSM algorithm
performs well for predicting CDOM [Siegel et al., 2005] as
demonstrated using match-up data of satellite and field
observations (R2 = 0.61; N = 112) and from meridional
transect observations from the North Atlantic Ocean (R2 =
0.65; N = 111). Thus, the correspondence between satellite
determinations of CDM and in situ CDOM observations
and between DChl and CDM signals all suggest that the
varying CDOM contribution is not properly accounted for
in the OC4v4 algorithm [Siegel et al., 2005].
[7] Other processes could conceivably create the ob-

served discrepancies though it is hard to make a convincing
argument. For example, land-sea interactions are not driving
the observed differences as the expected patterns from
riverine inputs are largely inconsistent with the observed
DChl distribution (Figure 1c) [see Siegel et al., 2002].
Further, it is also unlikely that the observed differences
are an artifact of the procedures used to correct the satellite

Table 1. Validation Statistics for Chlorophyll Concentration

Retrievalsa

OC4v4
vs. in Situ

GSM
vs. in Situ

OC4v4
vs. in Situ

(Z > 1000 m)

GSM
vs. in Situ

(Z > 1000 m)

N 1378 979 344 324
R2 0.757 0.689 0.706 0.823
Slope 0.947 0.876 0.951 0.815
Intercept �0.015 �0.244 �0.161 �0.156
RMS 0.290 0.381 0.175 0.259
BIAS �0.011 �0.216 �0.047 �0.148

aThis is an update of the validation table by Siegel et al. [2005] using a
more extensive data set. No interpretative differences were found in
comparison of the two statistical summaries of validation performance.
Field-satellite data match-ups were constructed using a 9 pixel median value
from available SeaWiFS imagery with a time difference of 3 hours or less
(see seabass.gsfc.nasa.gov/matchup_results.html). Values were not consid-
ered in the statistical comparison if the satellite-sensed water-leaving
radiance at 555 nm > 1.3 mW cm�2 nm�1 sr�1 to avoid extremely turbid
coastal waters [Otero and Siegel, 2004]. Further, GSM retrievals were not
considered if the satellite-sensed water-leaving radiance at 412 nm was
<0.17 mW cm�2 nm�1 sr�1 to eliminate obvious problems with the
atmospheric correction procedures [Maritorena and Siegel, 2005]. Water
depth was determined by comparing each in-situ measurement location with
the ETOPO2 digital bathymetry map. Statistical quantities are calculated on
log-transformed data following the procedures by O’Reilly et al. [1998].

Figure 1. Global climatology of (a) Chl(OC4v4) (mg m�3), (b) Chl(GSM) (mg m�3), (c) the normalized percentage
difference between them (DChl = 100*(Chl(OC4v4) � Chl(GSM))/Chl(GSM); units %) and (d) the CDM distribution
(m�1). These climatologies are constructed from simple averages from the available SeaWiFS data set (October 1997 to
December 2004) averaged to 1/3� spatial resolution. Also shown in Figure 1a are the locations of in situ observations from
the NOMAD data set (white dots) [Werdell and Bailey, 2005] (see Figure 3a), in Figure 1b all of the locations of the in situ
data set used to validate the ocean color products in Table 1 and in Figure 1c those validation data locations in Table 1
where water depths are greater than 1000 m. Note that wide expanses of the open ocean contribute little to bio-optical
databases.
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signals for the atmospheric path as there is no correspon-
dence in spatial patterns between DChl and retrieved aerosol
property indices in either space or time (data not shown).
Changes in phytoplankton community structure or photo-
adaptation, which alter phytoplankton light absorption per
unit chlorophyll in response to light and other environmen-
tal stresses [Bricaud et al., 1998; Cota et al., 2004], are also
not likely to create the observed differences. The effects of
photoadaptation and community structure shifts on light
absorption per unit chlorophyll are typically modeled using
non-linear power-law relationships with Chl [Bricaud et al.,
1998; Carder et al., 2004]. Hence, the global relationship
between phytoplankton absorption and Chl will be
accounted for in the empirical fittings of the two bio-optical
models. Residual differences may still occur, although the
observed, large-scale patterns of DChl (Figure 1c) and its
relationship to the derived CDM distribution (Figure 1d)
seem to preclude this possibility.
[8] We conclude that the observed differences in the two

Chl retrievals are built into the models themselves. A
comparison of clear water, in situ observations (in situ
Chl < 0.25 mg m�3 defined by [Gordon and Clark,
1981]) shows differences between the two models (DChl)
that increase as a function of CDM (Figure 3a; data from
Werdell and Bailey [2005]). This trend is also seen as a
function of in situ spectrophotometric observations of CDM
(Figure 3b; data from Siegel et al. [2005]). Type II regres-
sion statistics show weak yet significant positive relation-
ships between the DChl and either the algorithm produced
CDM value or the in situ observed CDOM. The correspon-
dence between these figures produced with in situ observa-
tions and the same figure constructed with satellite data
(Figure 2) is striking supporting our argument that the
observed differences is built into the algorithms. In turn,
these differences are created by the limitations of the data
sets used to parameterize the two bio-optical algorithms.

Relatively few of the in situ data locations used to develop
the two algorithms have come from locations where DChl
values are large (see the locations of the NOMAD data in
the upper left panel of Figure 1).
[9] Empirical modeling requires that model performance

is optimized through comparison to a development data set.
Performance can, however, be significantly degraded out-
side of the range of applicability of the development data set
[Davis, 1977]. It is for this reason that an evolution toward
mechanistic relationships is preferable. Here, we apply a
semi-analytical, bio-optical model (GSM) which accounts
for the independence among open ocean optical properties
[Siegel et al., 2002]. Comparison of the two bio-optical
models indicates that there may be a serious bias in our
interpretations of satellite ocean color data. This issue
revolves around the contribution that colored dissolved
organic materials make to ocean color variations [Siegel et
al., 2005]. Empirical algorithms, like OC4v4, assume that
the CDM to Chl relationship is a fixed function of Chl for
all ocean waters. The advantage of a semi-analytical ap-
proach is that it can accommodate the independent and
highly variable contributions of CDM and chlorophyll to
ocean optical properties.
[10] Implications of our results go well beyond the simple

quantification of light absorption by two components of the
upper ocean. Perhaps most importantly, these discrepancies
between models seriously impact assessments of ocean net
primary production (NPP) and quantifying global ocean
carbon cycling. For example, the Vertically Generalized
Productivity Model [Behrenfeld and Falkowski, 1997;
Behrenfeld et al., 2001] applied using OC4v4 Chl yields a
global net primary production of 53.5 Gt C/y, whereas if the
GSM Chl field is used it gives a value of 37.1 Gt C/y. This
difference of 16.4 Gt C/y is particularly worrisome when
compared to the magnitude of natural interannual variations
in NPP, such as the 5 Gt C/y change associated with the
1997–1999 El Nino to La Nina transition [Behrenfeld et al.,

Figure 3. Scatterplot of DChl vs. CDM derived from in
situ databases for open ocean conditions where (a) in situ
radiometric determinations from the NOMAD data set
[Werdell and Bailey, 2005] are used to estimate CDM using
the GSM model [Maritorena et al., 2002] and (b) spectro-
photometric observations [Siegel et al., 2005] are used to
determine CDM. In situ chlorophyll concentrations of less
than 0.25 mg m�3 are used to discriminate clear water
conditions in the data sets [Gordon and Clark, 1981]. In situ
CDM is defined here as the sum of detrital particulate and
CDOM absorption at 440 nm taken from spectrophoto-
metric data. A type II regression is performed in each plot
which demonstrates that the value of DChl increases with
increasing CDM value for both cases.

Figure 2. Two-dimensional probability density distribu-
tions of the co-occurrenceDChl and CDM from the SeaWiFS
5 year, global climatology. An increase in the CDM retrieval
leads to a positive bias or an increase in the retrieved value of
DChl between the two bio-optical models. Correlation
analysis using all the data used to construct this figure
(N = 1,876,368) results in a significant positive slope of
49.2 %/m�1 with a regression coefficient (r value) of
0.384. Values are probability of occurrence scaled so that
the integral over all parameter space is equal to one. The
color scale is log10 transformed.
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2001]. The detection of longer-term temporal change in
operational chlorophyll records [Gregg and Conkright,
2002] may also be easily confounded by details of the
bio-optical models identified here. For example if CDM
varies independently from Chl, then changes in global
biospheric processes may be incorrectly attributed [Siegel
et al., 2005]. Finally, a path for retrieving information on
growth rates from space has recently been developed that is
based on phytoplankton chlorophyll-to-carbon ratios de-
rived from GSM absorption and backscattering products
[Behrenfeld et al., 2005]. Clearly, any uncertainty in the
attribution of absorption to CDM versus chlorophyll will
impact interpretations and calculations made from satellite
ocean color imagery.
[11] The present work points out how differences in

algorithms with near identical validation characteristics
(Table 1) can produce important differences when applied
to the global ocean. This will have an important bearing on
the remote assessment of ecosystem functioning and carbon
cycling for the world’s oceans using satellite ocean color
data products. The resolution of this issue will require
continued improvements in remote sensing algorithms, the
in situ data sets used in validating these models and the
ocean viewing instrumentation deployed in space. This work
clearly suggests that remote sensing algorithms must evolve
from empirical toward mechanistic approaches so that con-
founding influences of independent ocean optical properties
can be diagnosed successfully. This path must also empha-
size the importance of in situ sampling covering the entire
parameter range that the ocean provides, a limitation that
currently reflects the fact that much of the ocean remains
largely unexplored [Claustre and Maritorena, 2003]. These
improvements in turn must be coupled to the development of
new satellite-based technologies capable of accurately
separating signals from the dominant in-water constituents.
It is along this path where we will reduce the uncertainty in
our remote assessments of the ocean biosphere due to
competing ocean optical constituents.
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